/** @file midl.c
* @brief ldap bdb back-end ID List functions */
/* $OpenLDAP$ */
/* This work is part of OpenLDAP Software .
*
* Copyright 2000-2021 The OpenLDAP Foundation.
* Portions Copyright 2001-2021 Howard Chu, Symas Corp.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted only as authorized by the OpenLDAP
* Public License.
*
* A copy of this license is available in the file LICENSE in the
* top-level directory of the distribution or, alternatively, at
* .
*/
#include
#include
#include
#include
#include
#include "midl.h"
/** @defgroup internal LMDB Internals
* @{
*/
/** @defgroup idls ID List Management
* @{
*/
#define CMP(x,y) ( (x) < (y) ? -1 : (x) > (y) )
unsigned mdb_midl_search( MDB_IDL ids, MDB_ID id )
{
/*
* binary search of id in ids
* if found, returns position of id
* if not found, returns first position greater than id
*/
unsigned base = 0;
unsigned cursor = 1;
int val = 0;
unsigned n = ids[0];
unsigned end = n;
binary_search:
while( 0 < n ) {
unsigned pivot = n >> 1;
cursor = base + pivot + 1;
val = CMP( ids[cursor], id );
unsigned x = cursor;
// skip past empty and block length entries
while(((intptr_t)ids[x]) <= 0) {
if (++x > end) { // reached the end, go to lower half
n = pivot;
val = 0;
end = cursor;
goto binary_search;
}
}
val = CMP( ids[x], id );
if( val < 0 ) {
n = pivot;
end = cursor;
} else if ( val > 0 ) {
base = cursor;
n -= pivot + 1;
} else {
return cursor;
}
}
if( val > 0 && (intptr_t)ids[cursor] > 0) ++cursor;
return cursor;
}
int mdb_midl_insert( MDB_IDL* ids_ref, MDB_ID id, int insertion_count )
{
MDB_IDL ids = *ids_ref;
unsigned x, i;
int rc;
x = mdb_midl_search( ids, id );
//assert( x > 0 );
if( x < 1 ) {
/* internal error */
fprintf(stderr, "negative search index error\n");
return -2;
}
if ( x <= ids[0] && ids[x] == id ) {
/* duplicate */
//assert(0);
fprintf(stderr, "duplicate value error\n");
return -1;
}
if (x > ids[0]) {
// need to grow
if ((rc = mdb_midl_need(ids_ref, 2)) != 0)
return rc;
ids = *ids_ref;
if (insertion_count == 1) {
ids[x] = 0;
ids[0] = x;
} else {
ids[x] = 0;
ids[x + 1] = 0;
ids[0] = x + 1;
}
}
unsigned before = x; // this will end up pointing to an entry or zero right before a block of empty space
while ((intptr_t)ids[--before] <= 0 && before > 0) {
// move past empty entries (and the length entry)
}
while ((intptr_t)ids[x] <= 0 && x < ids[0]) { x++;}
intptr_t next_id = ids[x];
intptr_t next_count = ids[x - 1];
if (next_count < 0) next_count = -next_count;
else next_count = 1;
if (id - next_count <= next_id && next_id > 0) {
if (id - next_count < next_id) {
fprintf(stderr, "overlapping duplicate entry %u\n", id);
return -1;
}
// connected to next entry
intptr_t count = next_count + insertion_count;
// ids[x + 1] = id; // no need to adjust id, so since we are adding to the end of the block
if (before > 0) {
MDB_ID previous_id = before > 0 ? ids[before] : 0;
int previous_count = before > 1 ? -ids[before - 1] : 0;
if (previous_count < 1) previous_count = 1;
if (previous_id - insertion_count <= id) {
if (previous_id - insertion_count < id) {
fprintf(stderr, "overlapping duplicate entry");
return -1;
}
// the block we just added to can now be connected to previous entry
count += previous_count;
if (previous_count > 1) {
ids[before - 1] = 0; // remove previous length
}
ids[before] = 0; // remove previous id
if (next_count == 1) {
// we can safely add the new count to the empty space
ids[x - 1] = -count; // update the count
return 0;
}
}
}
if (next_count > 1) {
ids[x - 1] = -count; // update the count
} else if (ids[x - 1] == 0) {
ids[x - 1] = -1 - insertion_count; // we can switch to length-2 block in place
} else {
id = -1 - insertion_count; // switching a single entry to a block size of 2
goto insert_id;
}
return 0;
}
if (before > 0) {
MDB_ID previous_id = before > 0 ? ids[before] : 0;
int count = before > 1 ? -ids[before - 1] : 0;
if (count < 1) count = 1;
if (previous_id - insertion_count <= id) {
if (previous_id - insertion_count < id) {
fprintf(stderr, "overlapping duplicate entry");
return -1;
}
// connected to previous entry
ids[before] = id; // adjust the starting block to include this
if (count > 1) {
ids[before - 1] -= insertion_count; // can just update the count to include this id
return 0;
} else {
id = -1 - insertion_count; // switching a single entry to a block size of 2
x = before;
goto insert_id;
}
}
}
if (x == 1 && ids[0] > 2 && ids[1] == 0 && ids[2] == 0 && ids[3] == 0) {
// this occurs when we have an empty list
if (insertion_count > 1) {
ids[2] = -insertion_count;
ids[3] = id;
} else
ids[2] = id;
return 0;
}
if (!ids[before + 1]) {
// there is an empty slot we can use, find a place in the middle
i = before + 3 < x ? (before + 2) : (before + 1);
if (i >= ids[0]) {
mdb_midl_need(ids_ref, 1);
ids = *ids_ref;
ids[0] = i;
}
ids[i] = id;
if (insertion_count == 1)
return 0; // done
// else insert the length
x = i;
id = -insertion_count;
}
intptr_t last_id;
insert_id:
// move items to try to make room
last_id = id;
if ((intptr_t)ids[x - 1] < 0) x--;
do {
i = x;
do {
next_id = ids[i];
ids[i++] = last_id;
if (i > ids[0]) { // it is full, need to expand
mdb_midl_need(ids_ref, 1);
ids = *ids_ref;
ids[0] = i;
ids[i] = next_id;
next_id = 0; // break out;
}
last_id = next_id;
} while(next_id);
} while ((intptr_t) id > 0 && insertion_count > 1 && (id = last_id = -insertion_count));
if (i > 0 && ((int) i - x > (ids[0] >> 2) + 4)) { // or too many moves. TODO: This threshold should actually be more like the square root of the length
// respread the ids (this will replace the reference too)
mdb_midl_respread(ids_ref);
}
return 0;
}
MDB_IDL mdb_midl_alloc(int num)
{
MDB_IDL ids = malloc((num+2) * sizeof(MDB_ID));
if (ids) {
*ids++ = num;
*ids = 0;
}
return ids;
}
void mdb_midl_free(MDB_IDL ids)
{
if (ids)
free(ids-1);
}
int mdb_midl_is_empty(MDB_IDL idl) {
if (idl == NULL) return 1;
unsigned n = idl[0];
for (unsigned i = 1; i <= n; i++) {
if (idl[i]) return 0;
}
return 1;
}
void mdb_midl_shrink( MDB_IDL *idp )
{
MDB_IDL ids = *idp;
if (*(--ids) > MDB_IDL_UM_MAX &&
(ids = realloc(ids, (MDB_IDL_UM_MAX+2) * sizeof(MDB_ID))))
{
*ids++ = MDB_IDL_UM_MAX;
*idp = ids;
}
}
static int mdb_midl_grow( MDB_IDL *idp, int num )
{
MDB_IDL idn = *idp-1;
/* grow it */
idn = realloc(idn, (*idn + num + 2) * sizeof(MDB_ID));
if (!idn)
return ENOMEM;
*idn++ += num;
*idp = idn;
return 0;
}
int mdb_midl_need( MDB_IDL *idp, unsigned num )
{
MDB_IDL ids = *idp;
num += ids[0];
if (num > ids[-1]) {
num = (num + num/4 + (256 + 2)) & -256;
// fprintf(stderr, "Resizing id list to %u\n", num);
if (!(ids = realloc(ids-1, num * sizeof(MDB_ID))))
return ENOMEM;
*ids++ = num - 2;
*idp = ids;
}
return 0;
}
int mdb_midl_append( MDB_IDL *idp, MDB_ID id )
{
MDB_IDL ids = *idp;
/* Too big? */
if (ids[0] >= ids[-1]) {
if (mdb_midl_grow(idp, MDB_IDL_UM_MAX))
return ENOMEM;
ids = *idp;
}
ids[0]++;
ids[ids[0]] = id;
return 0;
}
int mdb_midl_append_list( MDB_IDL *idp, MDB_IDL app )
{
MDB_IDL ids = *idp;
/* Too big? */
if (ids[0] + app[0] >= ids[-1]) {
if (mdb_midl_grow(idp, app[0]))
return ENOMEM;
ids = *idp;
}
memcpy(&ids[ids[0]+1], &app[1], app[0] * sizeof(MDB_ID));
ids[0] += app[0];
return 0;
}
int mdb_midl_append_range( MDB_IDL *idp, MDB_ID id, unsigned n )
{
MDB_ID *ids = *idp, len = ids[0];
/* Too big? */
if (len + n > ids[-1]) {
if (mdb_midl_grow(idp, n | MDB_IDL_UM_MAX))
return ENOMEM;
ids = *idp;
}
ids[0] = len + n;
ids += len;
while (n)
ids[n--] = id++;
return 0;
}
int mdb_midl_xmerge( MDB_IDL* idp, MDB_IDL merge )
{
for (unsigned i = 1; i <= merge[0]; i++) {
intptr_t entry = merge[i];
int count = 1;
if (entry <= 0) {
if (entry == 0) continue;
count = -entry;
entry = merge[++i];
}
int rc;
if ((rc = mdb_midl_insert(idp, entry, count)) != 0) {
return rc;
}
}
return 0;
}
/* Quicksort + Insertion sort for small arrays */
#define SMALL 8
#define MIDL_SWAP(a,b) { itmp=(a); (a)=(b); (b)=itmp; }
void
mdb_midl_sort( MDB_IDL ids )
{
/* Max possible depth of int-indexed tree * 2 items/level */
int istack[sizeof(int)*CHAR_BIT * 2];
int i,j,k,l,ir,jstack;
MDB_ID a, itmp;
ir = (int)ids[0];
l = 1;
jstack = 0;
for(;;) {
if (ir - l < SMALL) { /* Insertion sort */
for (j=l+1;j<=ir;j++) {
a = ids[j];
for (i=j-1;i>=1;i--) {
if (ids[i] >= a) break;
ids[i+1] = ids[i];
}
ids[i+1] = a;
}
if (jstack == 0) break;
ir = istack[jstack--];
l = istack[jstack--];
} else {
k = (l + ir) >> 1; /* Choose median of left, center, right */
MIDL_SWAP(ids[k], ids[l+1]);
if (ids[l] < ids[ir]) {
MIDL_SWAP(ids[l], ids[ir]);
}
if (ids[l+1] < ids[ir]) {
MIDL_SWAP(ids[l+1], ids[ir]);
}
if (ids[l] < ids[l+1]) {
MIDL_SWAP(ids[l], ids[l+1]);
}
i = l+1;
j = ir;
a = ids[l+1];
for(;;) {
do i++; while(ids[i] > a);
do j--; while(ids[j] < a);
if (j < i) break;
MIDL_SWAP(ids[i],ids[j]);
}
ids[l+1] = ids[j];
ids[j] = a;
jstack += 2;
if (ir-i+1 >= j-l) {
istack[jstack] = ir;
istack[jstack-1] = i;
ir = j-1;
} else {
istack[jstack] = j-1;
istack[jstack-1] = l;
l = i;
}
}
}
}
MDB_IDL mdb_midl_pack(MDB_IDL idl) {
if (!idl) return NULL;
MDB_IDL packed = mdb_midl_alloc(idl[0]);
unsigned j = 1;
for (unsigned i = 1; i < idl[0]; i++) {
intptr_t entry = idl[i];
if (entry) packed[j++] = entry;
}
if (j == 1) {
// empty list, just treat as no list
mdb_midl_free(packed);
return NULL;
}
packed[0] = j - 1;
return packed;
}
unsigned mdb_midl_pack_count(MDB_IDL idl) {
unsigned count = 0;
if (idl) {
for (unsigned i = 1; i < idl[0]; i++) {
if (idl[i]) count++;
}
}
return count;
}
int mdb_midl_respread( MDB_IDL *idp )
{
MDB_IDL ids = *idp;
unsigned j = 1;
unsigned size = ids[0];
unsigned new_size = 0;
unsigned entry_count = 0;
// first, do compaction
for (unsigned i = 1; i <= size; i++) {
intptr_t entry;
while (!(entry = ids[i])) {
if (++i > ids[0]) goto expand;
}
ids[j++] = entry;
new_size += entry < 0 ? 2 : 1; // one for the entry, and one for the length if it is a block
if (++entry_count & 1) new_size++; // and one for empty space on every other
if (entry < 0) ids[j++] = ids[++i]; // this was a block with a length
}
expand:
mdb_midl_need(idp, new_size - ids[0]);
ids = *idp;
ids[0] = new_size;
j--;
// re-spread out the entries with gaps for growth
for (unsigned i = new_size; i > 0;) {
intptr_t pgno = ids[j--];
ids[i--] = pgno;
intptr_t entry = ids[j];
if (entry < 0) {
ids[i--] = entry;
j--;
}
if (entry_count-- & 1)
ids[i--] = 0; // empty slot for growth
}
return 0;
}
int mdb_midl_print( FILE *fp, MDB_IDL ids )
{
if (ids == NULL) {
fprintf(fp, "freelist: NULL\n");
return 0;
}
unsigned i;
fprintf(fp, "freelist: %u/%u: ", ids[0], ids[-1]);
for (i=1; i<=ids[0]; i++) {
intptr_t entry = ids[i];
if (entry < 0) {
fprintf(fp, "%li-%li ", ids[i+1] - entry - 1, ids[i+1]);
i++;
} else if (ids[i] == 0) {
fprintf(fp, "_");
} else {
fprintf(fp, "%lu ", (unsigned long)ids[i]);
}
}
fprintf(fp, "\n");
return 0;
}
unsigned mdb_mid2l_search( MDB_ID2L ids, MDB_ID id )
{
/*
* binary search of id in ids
* if found, returns position of id
* if not found, returns first position greater than id
*/
unsigned base = 0;
unsigned cursor = 1;
int val = 0;
unsigned n = (unsigned)ids[0].mid;
while( 0 < n ) {
unsigned pivot = n >> 1;
cursor = base + pivot + 1;
val = CMP( id, ids[cursor].mid );
if( val < 0 ) {
n = pivot;
} else if ( val > 0 ) {
base = cursor;
n -= pivot + 1;
} else {
return cursor;
}
}
if( val > 0 ) {
++cursor;
}
return cursor;
}
int mdb_mid2l_insert( MDB_ID2L ids, MDB_ID2 *id )
{
unsigned x, i;
x = mdb_mid2l_search( ids, id->mid );
if( x < 1 ) {
/* internal error */
return -2;
}
if ( x <= ids[0].mid && ids[x].mid == id->mid ) {
/* duplicate */
return -1;
}
if ( ids[0].mid >= MDB_IDL_UM_MAX ) {
/* too big */
return -2;
} else {
/* insert id */
ids[0].mid++;
for (i=(unsigned)ids[0].mid; i>x; i--)
ids[i] = ids[i-1];
ids[x] = *id;
}
return 0;
}
int mdb_mid2l_append( MDB_ID2L ids, MDB_ID2 *id )
{
/* Too big? */
if (ids[0].mid >= MDB_IDL_UM_MAX) {
return -2;
}
ids[0].mid++;
ids[ids[0].mid] = *id;
return 0;
}
MDB_ID2L mdb_mid2l_alloc(int num)
{
MDB_ID2L ids = malloc((num+2) * sizeof(MDB_ID2));
if (ids) {
ids->mid = num;
ids++;
ids->mid = 0;
}
return ids;
}
void mdb_mid2l_free(MDB_ID2L ids)
{
if (ids)
free(ids-1);
}
int mdb_mid2l_need( MDB_ID2L *idp, unsigned num )
{
MDB_ID2L ids = *idp;
num += ids[0].mid;
if (num > ids[-1].mid) {
num = (num + num/4 + (256 + 2)) & -256;
if (!(ids = realloc(ids-1, num * sizeof(MDB_ID2))))
return ENOMEM;
ids[0].mid = num - 2;
*idp = ids+1;
}
return 0;
}
#if MDB_RPAGE_CACHE
unsigned mdb_mid3l_search( MDB_ID3L ids, MDB_ID id )
{
/*
* binary search of id in ids
* if found, returns position of id
* if not found, returns first position greater than id
*/
unsigned base = 0;
unsigned cursor = 1;
int val = 0;
unsigned n = (unsigned)ids[0].mid;
while( 0 < n ) {
unsigned pivot = n >> 1;
cursor = base + pivot + 1;
val = CMP( id, ids[cursor].mid );
if( val < 0 ) {
n = pivot;
} else if ( val > 0 ) {
base = cursor;
n -= pivot + 1;
} else {
return cursor;
}
}
if( val > 0 ) {
++cursor;
}
return cursor;
}
int mdb_mid3l_insert( MDB_ID3L ids, MDB_ID3 *id )
{
unsigned x, i;
x = mdb_mid3l_search( ids, id->mid );
if( x < 1 ) {
/* internal error */
return -2;
}
if ( x <= ids[0].mid && ids[x].mid == id->mid ) {
/* duplicate */
return -1;
}
/* insert id */
ids[0].mid++;
for (i=(unsigned)ids[0].mid; i>x; i--)
ids[i] = ids[i-1];
ids[x] = *id;
return 0;
}
#endif /* MDB_RPAGE_CACHE */
/** @} */
/** @} */